Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 188: 106326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838007

RESUMEN

Progranulin is a secreted pro-protein that has anti-inflammatory and neurotrophic effects and is necessary for maintaining lysosomal function. Mutations in progranulin (GRN) are a major cause of frontotemporal dementia. Most pathogenic GRN mutations cause progranulin haploinsufficiency, so boosting progranulin levels is a promising therapeutic strategy. Progranulin is constitutively secreted, then taken up and trafficked to lysosomes. Before being taken up from the extracellular space, progranulin interacts with receptors that may mediate anti-inflammatory and growth factor-like effects. Modifying progranulin trafficking is a viable approach to boosting progranulin, but progranulin secretion and uptake by cells in the brain is poorly understood and may involve distinct mechanisms from other parts of the body. Understanding the cell types and processes that regulate extracellular progranulin in the brain could provide insight into progranulin's mechanism of action and inform design of progranulin-boosting therapies. To address this question we used microdialysis to measure progranulin in interstitial fluid (ISF) of mouse medial prefrontal cortex (mPFC). Grn+/- mice had approximately 50% lower ISF progranulin than wild-type mice, matching the reduction of progranulin in cortical tissue. Fluorescent in situ hybridization and immunofluorescence confirmed that microglia and neurons are the major progranulin-expressing cell types in the mPFC. Studies of conditional microglial (Mg-KO) and neuronal (N-KO) Grn knockout mice revealed that loss of progranulin from either cell type results in approximately 50% reduction in ISF progranulin. LPS injection (i.p.) produced an acute increase in ISF progranulin in mPFC. Depolarizing cells with KCl increased ISF progranulin, but this response was not altered in N-KO mice, indicating progranulin secretion by non-neuronal cells. Increasing neuronal activity with picrotoxin did not increase ISF progranulin. These data indicate that microglia and neurons are the source of most ISF progranulin in mPFC, with microglia likely secreting more progranulin per cell than neurons. The acute increase in ISF progranulin after LPS treatment is consistent with a role for extracellular progranulin in regulating inflammation, and may have been driven by microglia or peripheral immune cells. Finally, these data indicate that mPFC neurons engage in constitutive progranulin secretion that is not acutely changed by neuronal activity.


Asunto(s)
Lipopolisacáridos , Lisosomas , Animales , Ratones , Antiinflamatorios , Hibridación Fluorescente in Situ , Lipopolisacáridos/farmacología , Ratones Noqueados , Progranulinas
2.
J Transl Med ; 21(1): 387, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322482

RESUMEN

BACKGROUND: Heterozygous loss-of-function mutations in the progranulin (PGRN) gene (GRN) cause a reduction in PGRN and lead to the development of frontotemporal dementia (FTD-GRN). PGRN is a secreted lysosomal chaperone, immune regulator, and neuronal survival factor that is shuttled to the lysosome through multiple receptors, including sortilin. Here, we report the characterization of latozinemab, a human monoclonal antibody that decreases the levels of sortilin, which is expressed on myeloid and neuronal cells and shuttles PGRN to the lysosome for degradation, and blocks its interaction with PGRN. METHODS: In vitro characterization studies were first performed to assess the mechanism of action of latozinemab. After the in vitro studies, a series of in vivo studies were performed to assess the efficacy of a mouse-cross reactive anti-sortilin antibody and the pharmacokinetics, pharmacodynamics, and safety of latozinemab in nonhuman primates and humans. RESULTS: In a mouse model of FTD-GRN, the rodent cross-reactive anti-sortilin antibody, S15JG, decreased total sortilin levels in white blood cell (WBC) lysates, restored PGRN to normal levels in plasma, and rescued a behavioral deficit. In cynomolgus monkeys, latozinemab decreased sortilin levels in WBCs and concomitantly increased plasma and cerebrospinal fluid (CSF) PGRN by 2- to threefold. Finally, in a first-in-human phase 1 clinical trial, a single infusion of latozinemab caused a reduction in WBC sortilin, tripled plasma PGRN and doubled CSF PGRN in healthy volunteers, and restored PGRN to physiological levels in asymptomatic GRN mutation carriers. CONCLUSIONS: These findings support the development of latozinemab for the treatment of FTD-GRN and other neurodegenerative diseases where elevation of PGRN may be beneficial. Trial registration ClinicalTrials.gov, NCT03636204. Registered on 17 August 2018, https://clinicaltrials.gov/ct2/show/NCT03636204 .


Asunto(s)
Demencia Frontotemporal , Humanos , Ratones , Animales , Progranulinas/genética , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Mutación/genética
3.
Acta Neuropathol Commun ; 11(1): 70, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118844

RESUMEN

Loss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia (FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in frontal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A. We analyzed samples from frontal cortex, a degenerated brain region, and occipital cortex, a relatively spared brain region. In frontal cortex, patients with sporadic FTLD-TDP type A exhibited similar increases in lysosomal protein levels, transcript levels, and storage material as patients with FTD-GRN. In occipital cortex of both patient groups, most lysosomal measures did not differ from controls. Frontal cortex from a transgenic mouse model of TDP-opathy had similar increases in cathepsin D and lysosomal storage material, showing that TDP-opathy and neurodegeneration can drive these changes independently of progranulin. To investigate these changes in additional FTLD subtypes, we analyzed frontal cortical samples from patients with sporadic FTLD-TDP type C or Pick's disease, an FTLD-tau subtype. All sporadic FTLD groups had similar increases in cathepsin D activity, lysosomal membrane proteins, and storage material as FTD-GRN patients. However, patients with FTLD-TDP type C or Pick's disease did not have similar increases in lysosomal transcripts as patients with FTD-GRN or sporadic FTLD-TDP type A. Based on these data, accumulation of lysosomal proteins and storage material may be a common aspect of end-stage FTLD. However, the unique changes in gene expression in patients with FTD-GRN or sporadic FTLD-TDP type A may indicate distinct underlying lysosomal changes among FTLD subtypes.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Enfermedad de Pick , Ratones , Animales , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Enfermedad de Pick/patología , Progranulinas/genética , Catepsina D/genética , Degeneración Lobar Frontotemporal/patología , Mutación/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Transgénicos
4.
J Biol Chem ; 297(3): 100993, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298019

RESUMEN

Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin's neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin's protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN's protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin's protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin's lysosomal and neurotrophic effects.


Asunto(s)
Lisosomas/metabolismo , Neuronas/metabolismo , Progranulinas/administración & dosificación , Receptores de Glutamato/efectos de los fármacos , Animales , Ratas , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
5.
Ann Clin Transl Neurol ; 7(12): 2433-2449, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197149

RESUMEN

OBJECTIVE: The goal of this study was to investigate the effect of progranulin insufficiency on extracellular vesicles (EVs), a heterogeneous population of vesicles that may contribute to progression of neurodegenerative disease. Loss-of-function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD), and brains from GRN carriers with FTD (FTD-GRN) exhibit signs of lysosomal dysfunction. Lysosomal dysfunction may induce compensatory increases in secretion of exosomes, EVs secreted from the endolysosomal system, so we hypothesized that progranulin insufficiency would increase EV levels in the brain. METHODS: We analyzed levels and protein contents of brain EVs from Grn-/- mice, which model the lysosomal abnormalities of FTD-GRN patients. We then measured brain EVs in FTD-GRN patients. To assess the relationship of EVs with symptomatic disease, we measured plasma EVs in presymptomatic and symptomatic GRN mutation carriers. RESULTS: Grn-/- mice had elevated brain EV levels and altered EV protein contents relative to wild-type mice. These changes were age-dependent, occurring only after the emergence of pathology in Grn-/- mice. FTD-GRN patients (n = 13) had elevated brain EV levels relative to controls (n = 5). Symptomatic (n = 12), but not presymptomatic (n = 7), GRN carriers had elevated plasma EV levels relative to controls (n = 8). INTERPRETATION: These data show that symptomatic FTD-GRN patients have elevated levels of brain and plasma EVs, and that this effect is modeled in the brain of Grn-/- mice after the onset of pathology. This increase in EVs could influence FTD disease progression, and provides further support for EVs as potential FTD biomarkers.


Asunto(s)
Vesículas Extracelulares/metabolismo , Lóbulo Frontal/metabolismo , Demencia Frontotemporal/metabolismo , Progranulinas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Progresión de la Enfermedad , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Progranulinas/deficiencia , Progranulinas/genética , Proteómica , Método Simple Ciego
6.
Neurobiol Dis ; 134: 104708, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837424

RESUMEN

Parkinson's disease (PD) is defined by motor symptoms such as tremor at rest, bradykinesia, postural instability, and stiffness. In addition to the classical motor defects that define PD, up to 80% of patients experience cognitive changes and psychiatric disturbances, referred to as PD dementia (PDD). Pathologically, PD is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein. Much of PD research has focused on the role of α-synuclein aggregates in degeneration of SNpc dopamine neurons because of the impact of loss of striatal dopamine on the classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the cortex and limbic brain regions such as the amygdala, which may contribute to non-motor phenotypes. Little is known about the consequences of α-synuclein inclusions in these brain regions, or in neuronal subtypes other than dopamine neurons. This project expands knowledge on how α-synuclein inclusions disrupt behavior, specifically non-motor symptoms of synucleinopathies. We show that bilateral injections of fibrils into the striatum results in robust bilateral α-synuclein inclusion formation in the cortex and amygdala. Inclusions in the amygdala and prefrontal cortex primarily localize to excitatory neurons, but unbiased stereology shows no significant loss of neurons in the amygdala or cortex. Fibril injected mice show defects in a social dominance behavioral task and fear conditioning, tasks that are associated with prefrontal cortex and amygdala function. Together, these observations suggest that seeded α-synuclein inclusion formation impairs behaviors associated with cortical and amygdala function, without causing cell loss, in brain areas that may play important roles in the complex cognitive features of PDD.


Asunto(s)
Amígdala del Cerebelo/patología , Conducta Animal/fisiología , Corteza Cerebral/patología , Cuerpos de Inclusión/patología , alfa-Sinucleína/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Corteza Cerebral/metabolismo , Condicionamiento Clásico , Cuerpo Estriado/efectos de los fármacos , Femenino , Cuerpos de Inclusión/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/psicología , Prueba de Desempeño de Rotación con Aceleración Constante , alfa-Sinucleína/administración & dosificación
7.
Acta Neuropathol Commun ; 7(1): 218, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870439

RESUMEN

Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid-metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only ß-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature ß-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated ß-glucocerebrosidase. Immunostaining revealed loss of neuronal ß-glucocerebrosidase in FTD-GRN patients. To investigate the effects of progranulin insufficiency on ß-glucocerebrosidase outside of the context of neurodegeneration, we investigated ß-glucocerebrosidase activity in progranulin-insufficient mice. Brains from Grn-/- mice had lower ß-glucocerebrosidase activity than wild-type littermates, which was corrected by AAV-progranulin gene therapy. These data show that progranulin insufficiency impairs ß-glucocerebrosidase activity in the brain. This effect is strongest in neurons and may be caused by impaired ß-glucocerebrosidase processing.


Asunto(s)
Demencia Frontotemporal/enzimología , Demencia Frontotemporal/genética , Glucosilceramidasa/metabolismo , Corteza Prefrontal/enzimología , Progranulinas/genética , Anciano , Anciano de 80 o más Años , Animales , Femenino , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/enzimología , Neuronas/patología , Corteza Prefrontal/patología
8.
Neurobiol Dis ; 124: 152-162, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30448285

RESUMEN

Loss-of-function mutations in progranulin (GRN), most of which cause progranulin haploinsufficiency, are a major autosomal dominant cause of frontotemporal dementia (FTD). Individuals with loss-of-function mutations on both GRN alleles develop neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Progranulin is a secreted glycoprotein expressed by a variety of cell types throughout the body, including neurons and microglia in the brain. Understanding the relative importance of neuronal and microglial progranulin insufficiency in FTD pathogenesis may guide development of therapies. In this study, we used mouse models to investigate the role of neuronal and microglial progranulin insufficiency in the development of FTD-like pathology and behavioral deficits. Grn-/- mice model aspects of FTD and NCL, developing lipofuscinosis and gliosis throughout the brain, as well as deficits in social behavior. We have previously shown that selective depletion of neuronal progranulin disrupts social behavior, but does not produce lipofuscinosis or gliosis. We hypothesized that reduction of microglial progranulin would induce lipofuscinosis and gliosis, and exacerbate behavioral deficits, in neuronal progranulin-deficient mice. To test this hypothesis, we crossed Grnfl/fl mice with mice expressing Cre transgenes targeting neurons (CaMKII-Cre) and myeloid cells/microglia (LysM-Cre). CaMKII-Cre, which is expressed in forebrain excitatory neurons, reduced cortical progranulin protein levels by around 50%. LysM-Cre strongly reduced progranulin immunolabeling in many microglia, but did not reduce total brain progranulin levels, suggesting that, at least under resting conditions, microglia contribute less than neurons to overall brain progranulin levels. Mice with depletion of both neuronal and microglial progranulin failed to develop lipofuscinosis or gliosis, suggesting that progranulin from extracellular sources prevented pathology in cells targeted by the Cre transgenes. Reduction of microglial progranulin also did not exacerbate the social deficits of neuronal progranulin-insufficient mice. These results do not support the hypothesis of synergistic effects between progranulin-deficient neurons and microglia. Nearly complete progranulin deficiency appears to be required to induce lipofuscinosis and gliosis in mice, while partial progranulin insufficiency is sufficient to produce behavioral deficits.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Microglía/metabolismo , Neuronas/metabolismo , Progranulinas/metabolismo , Animales , Conducta Animal , Femenino , Demencia Frontotemporal , Gliosis/metabolismo , Lipofuscina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Progranulinas/genética , Conducta Social
9.
Mol Neurodegener ; 13(1): 32, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929528

RESUMEN

BACKGROUND: Loss of function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD). Progranulin is a secreted glycoprotein that localizes to lysosomes and is critical for proper lysosomal function. Heterozygous GRN mutation carriers develop FTD with TDP-43 pathology and exhibit signs of lysosomal dysfunction in the brain, with increased levels of lysosomal proteins and lipofuscin accumulation. Homozygous GRN mutation carriers develop neuronal ceroid lipofuscinosis (NCL), an earlier-onset lysosomal storage disorder caused by severe lysosomal dysfunction. Multiple genome-wide association studies have shown that risk of FTD in GRN mutation carriers is modified by polymorphisms in TMEM106B, which encodes a lysosomal membrane protein. Risk alleles of TMEM106B may increase TMEM106B levels through a variety of mechanisms. Brains from FTD patients with GRN mutations exhibit increased TMEM106B expression, and protective TMEM106B polymorphisms are associated with decreased TMEM106B expression. Together, these data raise the possibility that reduction of TMEM106B levels may protect against the pathogenic effects of progranulin haploinsufficiency. METHODS: We crossed Tmem106b +/- mice with Grn +/- mice, which model the progranulin haploinsufficiency of GRN mutation carriers and develop age-dependent social deficits and lysosomal abnormalities in the brain. We tested whether partial Tmem106b reduction could normalize the social deficits and lysosomal abnormalities of Grn +/- mice. RESULTS: Partial reduction of Tmem106b levels did not correct the social deficits of Grn +/- mice. Tmem106b reduction also failed to normalize most lysosomal abnormalities of Grn +/- mice, except for ß-glucuronidase activity, which was suppressed by Tmem106b reduction and increased by progranulin insufficiency. CONCLUSIONS: These data do not support the hypothesis that Tmem106b reduction protects against the pathogenic effects of progranulin haploinsufficiency, but do show that Tmem106b reduction normalizes some lysosomal phenotypes in Grn +/- mice.


Asunto(s)
Demencia Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Animales , Demencia Frontotemporal/patología , Granulinas , Haploinsuficiencia , Heterocigoto , Ratones , Ratones Mutantes , Mutación , Polimorfismo de Nucleótido Simple , Progranulinas
10.
J Neurosci ; 38(9): 2341-2358, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29378861

RESUMEN

Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV-Grn) to deliver progranulin in Grn-/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV-Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV-Grn reduced lipofuscinosis in several brain regions of Grn-/- mice. AAV-Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV-Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV-Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn-/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations.SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin (GRN) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn-/- mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn-/- mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL.


Asunto(s)
Encéfalo/patología , Demencia Frontotemporal/patología , Lisosomas/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Progranulinas/administración & dosificación , Animales , Femenino , Terapia Genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Progranulinas/genética
11.
Brain ; 140(5): 1447-1465, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379303

RESUMEN

Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function.


Asunto(s)
Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/terapia , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neuronas/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Condicionamiento Psicológico , Dependovirus , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/genética , Vectores Genéticos , Granulinas , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Ratones Transgénicos , Nestina/genética , Corteza Prefrontal/metabolismo , Progranulinas , Conducta Social , Predominio Social
12.
J Neurosci ; 36(4): 1316-23, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818518

RESUMEN

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative four-repeat tauopathies with no cure. Mitigating pathogenic tau levels is a rational strategy for tauopathy treatment, but therapeutic targets with clinically available drugs are lacking. Here, we report that protein levels of the Rho-associated protein kinases (ROCK1 and ROCK2), p70 S6 kinase (S6K), and mammalian target of rapamycin (mTOR) were increased in PSP and CBD brains. RNAi depletion of ROCK1 or ROCK2 reduced tau mRNA and protein level in human neuroblastoma cells. However, additional phenotypes were observed under ROCK2 knockdown, including decreased S6K and phosphorylated mTOR levels. Pharmacologic inhibition of Rho kinases in neurons diminished detergent-soluble and -insoluble tau through a combination of autophagy enhancement and tau mRNA reduction. Fasudil, a clinically approved ROCK inhibitor, suppressed rough eye phenotype and mitigated pathogenic tau levels by inducing autophagic pathways in a Drosophila model of tauopathy. Collectively, these findings highlight the Rho kinases as rational therapeutic targets to combat tau accumulation in PSP and CBD. SIGNIFICANCE STATEMENT: Studies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) suggest that mitigating pathogenic tau levels is a rational strategy for tauopathy treatment. In this report, the Rho-associated protein kinases (ROCK1 and ROCK2) are identified as novel drug targets for PSP and CBD. We show that elevated insoluble tau levels are associated with increased ROCK1 and ROCK2 in PSP and CBD brains, whereas experiments in cellular and animal models identify pharmacologic inhibition of ROCKs as a mechanism-based approach to reduce tau levels. Our study correlates bona fide changes in PSP and CBD brains with cellular models, identifies drug targets, and tests the therapeutic in vivo.


Asunto(s)
Enfermedades de los Ganglios Basales/patología , Encéfalo/metabolismo , Parálisis Supranuclear Progresiva/patología , Quinasas Asociadas a rho/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Drosophila , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Degeneración Nerviosa/patología , Neuroblastoma/patología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
eNeuro ; 2(3)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26361634

RESUMEN

Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/-) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/- mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn-/- mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn-/- mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.

14.
Food Nutr Res ; 59: 27424, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26278978

RESUMEN

BACKGROUND: Diet and nutrition can impact on the biological processes underpinning neuropsychiatric disorders. Amino acid (AA) mixtures lacking a specific neurotransmitter precursor can change the levels of brain serotonin (5-HT) or dopamine (DA) in the central nervous system. The availability of these substances within the brain is determined by the blood-brain barrier (BBB) that restricts the access of peripheral AA into the brain. AA mixtures lacking tryptophan (TRP) compete with endogenous TRP for uptake into the brain across the BBB, which in turn leads to a decrease in central nervous 5-HT synthesis. OBJECTIVE: The present study compared the effects of a simplified acute tryptophan depletion (SATD) mixture in mice on blood and brain serotonergic and dopaminergic metabolites to those of a commonly used acute tryptophan depletion mixture (ATD Moja-De) and its TRP-balanced control (BAL). DESIGN: The SATD formula is composed of only three large neutral AAs: phenylalanine (PHE), leucine (LEU), and isoleucine (ILE). BAL, ATD Moja-De, or SATD formulas were delivered to adult male C57BL/6J mice by gavage. TRP, monoamines, and their metabolites were quantified in blood and brain regions (hippocampus, frontal cortex, amygdala, caudate putamen, and nucleus accumbens). RESULTS: Both ATD Moja-De and SATD significantly decreased levels of serum and brain TRP, as well as brain 5-HIAA and 5-HT compared with BAL. SATD reduced HVA levels in caudate but did not alter total DA levels or DOPAC. SATD decreased TRP and serotonergic metabolites comparably to ATD Moja-De administration. CONCLUSION: A simplified and more palatable combination of AAs can manipulate serotonergic function and might be useful to reveal underlying monoamine-related mechanisms contributing to different neuropsychiatric disorders.

15.
Nat Med ; 20(12): 1381-3, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473917

RESUMEN

Frontotemporal dementia (FTD) is a neurodegenerative disease that causes social dysfunction and other symptoms. A new study suggests that social dysfunction in FTD is due to decreased microRNA-124 expression and resulting changes in glutamate receptor composition in the prefrontal cortex.


Asunto(s)
Conducta Animal , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Lóbulo Frontal/metabolismo , Demencia Frontotemporal/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores AMPA/metabolismo , Conducta Social , Animales
16.
PLoS One ; 9(12): e114459, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486066

RESUMEN

Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Mitocondrias/patología , Mutágenos/toxicidad , Degeneración Nerviosa/patología , Adrenérgicos/toxicidad , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , ADN Mitocondrial/genética , Dopamina/toxicidad , Dopaminérgicos/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Degeneración Nerviosa/tratamiento farmacológico , Oxidopamina/toxicidad , Paraquat/toxicidad
17.
J Exp Med ; 211(10): 1937-45, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25155018

RESUMEN

Frontotemporal dementia (FTD) is the most common cause of dementia in people under 60 yr of age and is pathologically associated with mislocalization of TAR DNA/RNA binding protein 43 (TDP-43) in approximately half of cases (FLTD-TDP). Mutations in the gene encoding progranulin (GRN), which lead to reduced progranulin levels, are a significant cause of familial FTLD-TDP. Grn-KO mice were developed as an FTLD model, but lack cortical TDP-43 mislocalization and neurodegeneration. Here, we report retinal thinning as an early disease phenotype in humans with GRN mutations that precedes dementia onset and an age-dependent retinal neurodegenerative phenotype in Grn-KO mice. Retinal neuron loss in Grn-KO mice is preceded by nuclear depletion of TDP-43 and accompanied by reduced expression of the small GTPase Ran, which is a master regulator of nuclear import required for nuclear localization of TDP-43. In addition, TDP-43 regulates Ran expression, likely via binding to its 3'-UTR. Augmented expression of Ran in progranulin-deficient neurons restores nuclear TDP-43 levels and improves their survival. Our findings establish retinal neurodegeneration as a new phenotype in progranulin-deficient FTLD, and suggest a pathological loop involving reciprocal loss of Ran and nuclear TDP-43 as an underlying mechanism.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/complicaciones , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Enfermedades Neurodegenerativas/fisiopatología , Retina/fisiopatología , Transporte Activo de Núcleo Celular/fisiología , Factores de Edad , Animales , Electrorretinografía , Demencia Frontotemporal/genética , Granulinas , Humanos , Modelos Lineales , Ratones , Ratones Noqueados , Mutación/genética , Enfermedades Neurodegenerativas/etiología , Progranulinas , Tomografía de Coherencia Óptica , Proteína de Unión al GTP ran/metabolismo
18.
J Neural Transm (Vienna) ; 121(2): 153-62, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24061481

RESUMEN

Amino acid (AA) depletion techniques have been used to decrease serotonin (5-HT) and/or dopamine (DA) synthesis after administration of a tryptophan (acute tryptophan depletion, ATD) or phenylalanine/tyrosine-free (phenylalanine-tyrosine depletion, PTD) AA formula and are useful as neurochemical challenge procedures to study the impact of DA and 5-HT in patients with neuropsychiatric disorders. We recently demonstrated that the refined Moja-De ATD paradigm decreases brain 5-HT synthesis in humans and mice and lowers brain 5-HT turnover. In the present study we validated the neurochemical effects of three developed AA formulas on brain 5-HT and DA function in mice. To distinguish the direct and indirect effects of such mixtures on 5-HT and DA and to determine whether additive depletion of both could be obtained simultaneously, we compared the effects of ATD for 5-HT, PTD for DA, and a combined monoamine depletion mixture (CMD) compared to a control condition consisting of a balanced amino acid mixture. Food-deprived male C57BL/6J mice were gavaged with AA mixtures. Serum and brain samples were collected and analyzed for determination of tryptophan (Trp), tyrosine (Tyr), 5-HT, 5-HIAA, DA, DOPAC and HVA levels. ATD was the most effective at decreasing Trp, 5-HT and 5-HIAA. In contrast, PTD reduced Tyr globally but HVA only in certain brain regions. Although CMD affected both 5-HT and DA synthesis, it was less effective when compared with ATD or PTD alone. The present results demonstrate that two newly developed PTD and CMD formulas differentially impact brain 5-HT and DA synthesis relative to 5-HT-specific ATD Moja-De. Different effects on 5-HT and DA function by these mixtures suggest that the exact composition may be a critical determinant for effectiveness with respect to the administered challenge procedure.


Asunto(s)
Encéfalo/metabolismo , Dopamina/metabolismo , Alimentos Formulados , Serotonina/metabolismo , Ácido 3,4-Dihidroxifenilacético , Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Ácido Homovanílico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenilalanina/deficiencia , Estadísticas no Paramétricas , Triptófano/deficiencia , Tirosina/deficiencia
19.
Behav Brain Res ; 256: 119-27, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23721963

RESUMEN

The light/dark (LD) test is a commonly used rodent test of unconditioned anxiety-like behavior that is based on an approach/avoidance conflict between the drive to explore novel areas and an aversion to brightly lit, open spaces. We used the LD test to investigate developmental differences in behavior between adolescent (postnatal day (PN) 28-34) and adult (PN67-74) male rats. We investigated whether LD behavioral measures reflect anxiety-like behavior similarly in each age group using factor analysis and multiple regression. These analyses showed that time in the light compartment, percent distance in the light, rearing, and latency to emerge into the light compartment were measures of anxiety-like behavior in each age group, while total distance traveled and distance in the dark compartment provided indices of locomotor activity. We then used these measures to assess developmental differences in baseline LD behavior and the response to anxiogenic drugs. Adolescent rats emerged into the light compartment more quickly than adults and made fewer pokes into the light compartment. These age differences could reflect greater risk taking and less risk assessment in adolescent rats than adults. Adolescent rats were less sensitive than adults to the anxiogenic effects of the benzodiazepine inverse agonist N-methyl-ß-carboline-3-carboxamide (FG-7142) and the α2 adrenergic antagonist yohimbine on anxiety-like behaviors validated by factor analysis, but locomotor variables were similarly affected. These data support the results of the factor analysis and indicate that GABAergic and noradrenergic modulation of LD anxiety-like behavior may be immature during adolescence.


Asunto(s)
Ansiedad/diagnóstico , Luz , Pruebas Neuropsicológicas , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Factores de Edad , Animales , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Carbolinas/farmacología , Conducta Exploratoria/efectos de los fármacos , Análisis Factorial , Masculino , Actividad Motora/efectos de los fármacos , Ratas Sprague-Dawley , Análisis de Regresión , Asunción de Riesgos , Factores de Tiempo , Yohimbina/farmacología
20.
Neuropharmacology ; 73: 359-67, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23774134

RESUMEN

There has been controversy over use of selective serotonin reuptake inhibitors (SSRIs) to treat affective disorders in children and adolescents due to clinical reports of increased risk for suicidal ideation and behavior during treatment, and animal studies showing changes in adult anxiety- and depressive-like behaviors after repeated treatment during adolescence. However, the acute effect of serotonergic drugs on affective behavior during adolescence is poorly understood. We investigated serotonergic modulation of anxiety-like behavior in adolescent (PN28-32) and adult (PN67-73) male rats using the SSRI fluoxetine, the 5-HT(1A) agonist 8-OH DPAT, and the 5-HT2 agonist mCPP. Acute treatment with fluoxetine (10 mg/kg, i.p.) produced greater anxiogenic effects in adults than adolescents in the light/dark (LD) test for anxiety-like behavior, but fluoxetine (2.5, 5, and 10 mg/kg, i.p.) increased extracellular serotonin in the medial prefrontal cortex similarly in both ages. Adults were also more sensitive to the anxiogenic effects of 8-OH DPAT (0.25 and 0.5 mg/kg, i.p.), but not mCPP (0.5 and 1 mg/kg, i.p.), in the LD test. Fluoxetine (10 mg/kg) stimulated greater increases in c-Fos expression across the extended amygdala in adults than in adolescents, and 8-OH DPAT (0.5 mg/kg) produced greater increases in c-Fos in the lateral orbital cortex and central nucleus of the amygdala in adults. These data show that lower anxiogenic effects of acute SSRIs in adolescents are associated with lesser activation of cortical and amygdala brain regions. This immaturity could contribute to the different profile of behavioral effects observed in adolescents and adults treated with SSRIs.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Ansiedad/fisiopatología , Corteza Prefrontal/fisiopatología , Agonistas de Receptores de Serotonina/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Factores de Edad , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fluoxetina/farmacología , Masculino , Piperazinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...